Lidtracker.ru

Лид Трэкер
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как построить график в Excel — Инструкция

Как построить график в Excel — Инструкция

Microsoft Excel является удобным многофункциональным инструментом. Данное приложение прекрасно подходит для построения разнообразных графиков и диаграмм.

Далеко не все пользователи знают, что при помощи Excel можно сделать графики математических функций различной сложности.

В этой статье мы подробно рассмотрим, как построить график Эксель.

Как построить график в Excel

Содержание:

На сегодняшний день популярностью среди пользователей пользуются две основные версии данного приложения: Excel 2013 и Excel 2003, которые существенно отличаются друг от друга, по этой причине процесс построения графиков в данных приложениях серьезно отличается.

Процесс создания графика в приложении Excel 2003, 2007

Порядок построения диаграмм в приложении Эксель 2003 является похожим на процесс работы с программой Эксель 2007.

Результаты вычислений выполняют роль исходных данных в процессе создания диаграмм.

Порядок формирования графика в Экселе 2003 включает в себя следующие этапы:

Создание таблицы с данными

Создание таблицы с данными

  • В самом начале запустите приложение и откройте новый лист книги. Далее сделайте таблицу из двух столбцов. Первый столбец будет использоваться для записи аргумента (X), а второй – для функции (Y). Как это выглядит, вы можете увидеть на картинке, размещенной ниже.

Заполнение первого столбца таблицы

Заполнение первого столбца таблицы

  • На следующем этапе внесите в столбец B аргумент X. Затем в столбец C вносится формула, которая будет применяться для построения графика. В качестве наглядного примера мы возьмем довольно простую формулу y = x 3 . Как это выглядит, вы можете увидеть на расположенной ниже картинке.

Следует помнить, что в данном приложении перед любой формулой нужно ставить знак «=».

В нашем конкретном примере формула, которую необходимо внести в столбец C, будет выглядеть так: =B3^3, т.е. программа будет возводить значение из ячейки B3 в третью степень.

Также вы можете использовать и альтернативную формулу, которая будет выглядеть, так: =B3*B3*B3. После внесения формулы в столбец C следует нажать «Enter» .

Так как внесение формулы в каждую ячейку является долгим и достаточно трудоемким процессом, разработчики Эксель позаботились о комфорте пользователей.

Для того чтобы внести формулу во все ячейки, достаточно просто растянуть заполненную.

Эта особенность является одним из главных преимуществ Эксель, позволяющая упростить работу с приложением. Также напоминаем, что ячейки можно объединять между собой.

Заполнение второго столбца таблицы

Вам необходимо щелкнуть по заполненной ячейке, в которой находится формула. В нижнем правом углу этой ячейки вы сможете увидеть небольшой квадратик.

На этот квадрат нужно навести курсор, зажать правую кнопку и растянуть формулу на все незаполненные ячейки.

Как именно это, делается вы можете увидеть на картинке, размещенной ниже.

Выбор пункта меню «Диаграмма»

Выбор пункта меню «Диаграмма»

  • На следующем этапе мы перейдем к созданию графика. Для того чтобы это сделать, вам нужно перейти в директорию меню/вставка/диаграмма, как это показано на расположенной ниже картинке.

Выбор типа точечной диаграммы

Выбор типа точечной диаграммы

  • Затем вам необходимо выбрать подходящую из доступных точечных диаграмм и нажать кнопку «Далее» . Следует выбирать именно точечную диаграмму, потому что остальные типы диаграмм не дают возможности задать аргумент и функцию в форме ссылки на заполненную вами группу ячеек. Процесс выбора подходящей точечной диаграммы показан на картинке, размещенной ниже.

Настройка диаграммы

  • На следующем этапе перед вами возникнет окно, в котором необходимо открыть вкладку под названием «Ряд» . Затем следует добавить ряд при помощи специальной кнопки под названием «Добавить» . Для выбора ячеек необходимо нажать на кнопки, которые показаны на размещенной ниже картинке.

Внешний вид готовой диаграммы

Внешний вид готовой диаграммы

Вам потребуется выделить ячейки, в которые вы ранее внесли значения Y и X. Затем необходимо нажать кнопку «Готово» .

  • После этого перед вами появится график как на картинке.

При необходимости вы можете изменить значения аргумента и функции, что приведет к мгновенному перестроению созданного графика.

Кстати, вас могут заинтересовать еще статьи:

Создание графика в Excel 2013

Для того, что разобраться, как сделать таблицу в Эксель 2013, мы возьмем в качестве примера функцию y=sin(x), таким образом, у нас должна получиться синусоида.

Для построения диаграммы вам нужно будет выполнить следующие действия:

Создание таблицы

  • В самом начале необходимо запустить приложение. Затем следует выбрать чистую страницу и для удобства оформить два столбца в виде таблицы. В один столбец мы будем вносить аргумент X, а в другой – функцию Y. Как выглядит оформление таблицы, вы можете увидеть на картинке, которая размещена ниже.

Заполнение таблицыЗаполнение таблицыЗаполнение таблицы

  • На следующем этапе необходимо внести в таблицу значение аргумента, а в первую ячейку второго столбца следует внести формулу =SIN(C4). После того как вы внесете формулу в ячейку, необходимо растянуть ее таким же способом, как было описано выше, на все незаполненные ячейки. Процесс заполнения столбца с формулами вы можете увидеть на картинках.

Выделение таблицы

  • После того как вы полностью заполните таблицу, можно приступить к процессу создания графика. Вам необходимо выделить всю таблицу вместе с заголовками, как это показано на размещенной ниже картинке.

Выбор подпункта меню «Диаграммы»

Выбор подпункта меню «Диаграммы»

  • После выделения таблицы, следует в меню выбрать функцию вставка, после чего зайти в подпункт «Вставить точечную диаграмму», как это показано на рисунке, размещенном ниже.

Выбор типа точечной диаграммы

Выбор типа точечной диаграммы

  • Из доступных вариантов вам нужно будет выбрать один из доступных видов точечной диаграммы, как это показано на рисунке, расположенном ниже.

Готовая диаграмма

  • После выбора подходящего типа точечной диаграммы перед вами возникнет диаграмма, как на картинке, расположенной ниже. Если вы измените значения в созданной таблице, то созданный график изменится в соответствии с внесенными изменениями.

Выбор готовой формулы

Выбор готовой формулы

Если в процессе создания диаграммы у вас возникнут проблемы с составлением правильной формулы, то вы можете воспользоваться готовыми шаблонами.

Для этого вам необходимо зайти в специальный пункт меню и выбрать подходящую формулу, как это показано на рисунке.

Теперь вы знаете, как сделать график в трех версиях Эксель. Если точно следовать описанному выше порядку действий, то у вас не должно возникнуть никаких проблем с созданием диаграмм.

Как построить график по точкам в Excel пошагово (Эксель)

Многие задаются вопросом «Как построить график в Excel?». Хотя на самом деле это довольно простая задача, но неопытные пользователи порой сбиваются с толку и теряются, в выборе типа диаграмм, и правильном построении таблиц с данными.

В Excel имеется два варианта диаграмм для создания графиков:
• точечная диаграмма;
• график.

Точечные диаграммы зачастую применяют при наличии двух рядов данных, и показатели одного из рядов, используют для определения второго. Наилучшим примером этого, является диаграмма функции y=x 2.

Что же касается графика, то его используют для обычного просмотра изменения данных.

Чтобы построить график, вам достаточно совершить не больше одного-двух касаний. В качестве примера, возьмем показатели доллара в декабре.

Как построить график по точкам в Excel пошагово (Эксель)

Следует выделить таблицу, и на вкладке «Вставка», выберите кнопку «График». После нажатия вы получите несколько вариантов графика.

Как построить график по точкам в Excel пошагово (Эксель)

Среди предложенных вариантов, выберете наиболее подходящий. В качестве примера мы выбрали график с маркерами.

Как построить график по точкам в Excel пошагово (Эксель)

Теперь давайте рассмотрим способ создания графика, через точечную диаграмму. Зачастую ее применяют для создания графиков функций. В качестве примера, возьмем формулу y=x 2.

Теперь нам нужно составить таблицу с данными из двух столбиков.

Как построить график по точкам в Excel пошагово (Эксель)

Выделяем таблицу и заходим в панель управление, в «Вставку», выбирая там «точечную диаграмму».

Как построить график по точкам в Excel пошагово (Эксель)

Далее как и в прошлый раз мы получаем варианты диаграммы, мы выбрали диаграмму с маркерами.

Как построить график по точкам в Excel пошагово (Эксель)

Теперь давайте поработаем с вкладкой «Конструктор». Тут следует добавить несколько рядов данных:

Как построить график по точкам в Excel пошагово (Эксель)

Возвращаемся к таблице и выбираем вкладку «конструктор». Там нажимаем клавишу «Выбрать данные». Вам будет представлено окно, в котором мы можем выбрать как диапазон нашу новую табличку.

Как построить график по точкам в Excel пошагово (Эксель)

Тут же, мы можем поменять параметры любого из рядов таблицы.

Как построить график по точкам в Excel пошагово (Эксель)

Теперь на диаграмме появятся новые функции.

Таким образом, мы рассмотрели два варианта построения графиков, и на этом примере, отчетливо видно, что сделать это и вправду очень просто.

Exceltip

Блог о программе Microsoft Excel: приемы, хитрости, секреты, трюки

Как построить график с нормальным распределением в Excel

95-0-Нормальное распределение в Excel лого

Так как я часто имею дело с большим количеством данных, у меня время от времени возникает необходимость генерировать массивы значений для проверки моделей в Excel. К примеру, если я хочу увидеть распределение веса продукта с определенным стандартным отклонением, потребуются некоторые усилия, чтобы привести результат работы формулы СЛУЧМЕЖДУ() в нормальный вид. Дело в том, что формула СЛУЧМЕЖДУ() выдает числа с единым распределением, т.е. любое число с одинаковой долей вероятности может оказаться как у нижней, так и у верхней границы запрашиваемого диапазона. Такое положение дел не соответствует действительности, так как вероятность возникновения продукта уменьшается по мере отклонения от целевого значения. Т.е. если я произвожу продукт весом 100 грамм, вероятность, что я произведу 97-ми или 103-граммовый продукт меньше, чем 100 грамм. Вес большей части произведенной продукции будет сосредоточен рядом с целевым значением. Такое распределение называется нормальным. Если построить график, где по оси Y отложить вес продукта, а по оси X – количество произведенного продукта, график будет иметь колоколообразный вид, где наивысшая точка будет соответствовать целевому значению.

Читать еще:  MSI Afterburner скачать с официального сайта

Таким образом, чтобы привести массив, выданный формулой СЛУЧМЕЖДУ(), в нормальный вид, мне приходилось ручками исправлять пограничные значения на близкие к целевым. Такое положение дел меня, естественно, не устраивало, поэтому, покопавшись в интернете, открыл интересный способ создания массива данных с нормальным распределением. В сегодняшней статье описан способ генерации массива и построения графика с нормальным распределением.

Характеристики нормального распределения

Непрерывная случайная переменная, которая подчиняется нормальному распределению вероятностей, обладает некоторыми особыми свойствами. Предположим, что вся производимая продукция подчиняется нормальному распределению со средним значением 100 грамм и стандартным отклонением 3 грамма. Распределение вероятностей для такой случайной переменной представлено на рисунке.

95-1-Нормальное распределение в Excel

Из этого рисунка мы можем сделать следующие наблюдения относительно нормального распределения — оно имеет форму колокола и симметрично относительно среднего значения.

Стандартное отклонение имеет немаловажную роль в форме изгиба. Если посмотреть на предыдущий рисунок, то можно заметить, что практически все измерения веса продукта попадают в интервал от 95 до 105 граммов. Давайте рассмотрим следующий рисунок, на котором представлено нормальное распределение с той же средней – 100 грамм, но со стандартным отклонением всего 1,5 грамма

95-2-Нормальное распределение в Excel

Здесь вы видите, что измерения значительно плотней прилегают к среднему значению. Почти все производимые продукты попадают в интервал от 97 до 102 грамм.

Небольшое значение стандартного отклонения выражается в более «тощей и высокой кривой, плотно прижимающейся к среднему значению. Чем больше стандартное, тем «толще», ниже и растянутее получается кривая.

Создание массива с нормальным распределением

Итак, чтобы сгенерировать массив данных с нормальным распределением, нам понадобится функция НОРМ.ОБР() – это обратная функция от НОРМ.РАСП(), которая возвращает нормально распределенную переменную для заданной вероятности для определенного среднего значения и стандартного отклонения. Синтаксис формулы выглядит следующим образом:

=НОРМ.ОБР(вероятность; среднее_значение; стандартное_отклонение)

Другими словами, я прошу Excel посчитать, какая переменная будет находится в вероятностном промежутке от 0 до 1. И так как вероятность возникновения продукта с весом в 100 грамм максимальная и будет уменьшаться по мере отдаления от этого значения, то формула будет выдавать значения близких к 100 чаще, чем остальных.

Давайте попробуем разобрать на примере. Выстроим график распределения вероятностей от 0 до 1 с шагом 0,01 для среднего значения равным 100 и стандартным отклонением 1,5.

95-3-демонстрация функции НОРМОБР

Как видим из графика точки максимально сконцентрированы у переменной 100 и вероятности 0,5.

Этот фокус мы используем для генерирования случайного массива данных с нормальным распределением. Формула будет выглядеть следующим образом:

=НОРМ.ОБР(СЛЧИС(); среднее_значение; стандартное_отклонение)

Создадим массив данных для нашего примера со средним значением 100 грамм и стандартным отклонением 1,5 грамма и протянем нашу формулу вниз.

95-4-массив данных с нормальным распределением

Теперь, когда массив данных готов, мы можем выстроить график с нормальным распределением.

Построение графика нормального распределения

Прежде всего необходимо разбить наш массив на периоды. Для этого определяем минимальное и максимальное значение, размер каждого периода или шаг, с которым будет увеличиваться период.

95-5-данные для нормального распределения

Далее строим таблицу с категориями. Нижняя граница (B11) равняется округленному вниз ближайшему кратному числу. Остальные категории увеличиваются на значение шага. Формула в ячейке B12 и последующих будет выглядеть:

В столбце X будет производится подсчет количества переменных в заданном промежутке. Для этого воспользуемся формулой ЧАСТОТА(), которая имеет два аргумента: массив данных и массив интервалов. Выглядеть формула будет следующим образом =ЧАСТОТА(Data!A1:A175;B11:B20). Также стоит отметить, что в таком варианте данная функция будет работать как формула массива, поэтому по окончании ввода необходимо нажать сочетание клавиш Ctrl+Shift+Enter.

95-6-таблица для нормального распределения

Таким образом у нас получилась таблица с данными, с помощью которой мы сможем построить диаграмму с нормальным распределением. Воспользуемся диаграммой вида Гистограмма с группировкой, где по оси значений будет отложено количество переменных в данном промежутке, а по оси категорий – периоды.

95-7-график нормального распределения в excel

Осталось отформатировать диаграмму и наш график с нормальным распределением готов.

95-8-график с нормальным распределением

Итак, мы познакомились с вами с нормальным распределением, узнали, что Excel позволяет генерировать массив данных с помощью формулы НОРМ.ОБР() для определенного среднего значения и стандартного отклонения и научились приводить данный массив в графический вид.

Вам также могут быть интересны следующие статьи

13 комментариев

Ренат, добрый день.
Все несколько проще:
Данные->Анализ данных->Генерация случайных чисел (Распределение=Нормальное)
+
Данные->Анализ данных->Гистограмма->Галка на «вывод графика» («Карманы» можно даже не задавать)

Как построить график системы уравнений в excel

Требуется на отрезке [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

Решение (1 ряд данных)

Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.

СОВЕТ: О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL. О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL.

Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1 ):

Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

Чтобы построить диаграмму типа Точечная:

  • выделите любую ячейку таблицы;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами.

Чтобы построить диаграмму типа График:

  • выделите любую столбец f(x) вместе с заголовком;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами.

У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных.

Решение (2 ряда данных)

Создадим другую таблицу с исходными данными в файле примера, лист График :

Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

Решение (3 ряда данных)

Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График .

Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

Цели и задачи.

  1. Развитие приемов умственной деятельности, формирование и развитие функционального мышления учащихся, развитие познавательных потребностей учащихся, создание условий для приобретения опыта работы учащихся в среде ИКТ.
  2. Достижение сознательного усвоения учебного материала учащимися, работа над повышением грамотности устной речи, правильного использования компьютерных терминов.
  3. Научить применять возможности MS Excel в повседневной жизни, в познавательной деятельности.
  4. Закрепить навыки создания таблиц и диаграмм.
  5. Научить решать систему уравнений графическим методом, исследовать график функции.

Оборудование урока: компьютеры, мультимедиа проектор.

Программное обеспечение: Windows XP, пакет программ MS Office 2003.

Читать еще:  Как в Word перевернуть лист в альбомный

Тема нашего урока тесно связана с математикой разделы “Графики функций” и “Решение систем уравнений”. Поэтому нам понадобятся ранее полученные навыки. Но мы постараемся упростить нашу задачу с помощью применения современных вычислительных средств.

Запишите в тетради тему урока и укажите дату.

Назовите мне кого из класса сегодня нет.

Давайте вспомним, что такое уравнение, и как его можно решить графически.

Назовите, пожалуйста, что в математике называют уравнением, решением уравнения и системой уравнений.

(Учащиеся приводят определения)

Уравнение – это математическое выражение, содержащее неизвестную величину (переменную) и 0 с правой стороны от знака =.

Система уравнений – несколько связанных уравнений, имеющих одинаковые обозначения неизвестных величин (переменных).

Решением уравнения – называют такое значение неизвестной величины, при подстановке которого левая часть выражения принимает значение 0. И мы получаем верное равенство.

Но, с другой стороны, подобное выражение можно представить как функцию с зависимой и независимой величинами. Если мы слева от знака = поставим Y, а справа заданное выражение. Y – зависимая величина, Х – независимая величина. В этом случае Решением уравнения является точка пересечения графика функции с осью ОХ.

Для решения уравнения графическим методом необходимо рассчитать значения функции в ключевых точках с координатой Х (Х меняется в диапазоне допустимых значений), нанести эти точки на систему координат, построить график функции и определить координаты точки пересечения графика с осью ОХ.

Это достаточно сложная задача. Нужно достаточно много вычислений и аккуратное построение графика функции. Также мы заранее не можем сказать, из какого диапазона чисел необходимо брать значения Х.

Но эту задачу может взять на себя ЭВМ.

Мы воспользуемся возможностями программы MS Excel.

Основная часть

Давайте разобьемся на 2 группы. Сильные ученики, которые уже хорошо владеют средствами MS Excel, попытаются самостоятельно разработать таблицу. А остальные ребята будут вместе со мной последовательно выполнять действия.

Сильные ученики пересаживаются за дальние компьютеры и самостоятельно разрабатывают таблицу для решения системы уравнений. Они должны получить примерно такую картинку на экране.

С остальными мы работаем в режиме “Делай как Я”. Я демонстрирую действия на экране проектора и комментирую, вы стараетесь выполнять эти действия у себя на ЭВМ.

И так. Мы запустили программу MS Excel.

Мы хотим разработать таблицу для решения системы уравнений:

Нам необходимо задать диапазон изменения величины Х и рассчитать соответствующее значение Y.

Сформируем начальные данные.

В ячейку A1 запишем – нач Х =. В ячейку D1 запишем – шаг Х =. В ячейках B1, E1 их соответствующие значения – (-2,5) и 0,15.

В ячейках C4, F4 запишем общий вид наших уравнений. В строке 5 сформируем заголовки будущих таблиц значений заданных функций.

Теперь в столбиках B, E мы должны сформировать значения для величины Х. А в столбиках C, E значения величин Y. У нас должна получиться вот такая картинка. Столбики со значением величины X мы должны сформировать так, чтобы было удобно менять начальное его значение и шаг X, которые мы создали в заголовке.

Формулы, которые нам нужно ввести приведены на рисунке.

Заметьте, что большинство формул повторяются, и их можно ввести методом копирования.

Заполните, пожалуйста, в каждой таблице 20-25 строчек.

Символ $ в формуле обозначает, что данный адрес ячейки является абсолютным и он не будет изменяться при копировании формулы.

Проверьте, чтобы ваши расчётные данные совпадали с рисунком 2.

Нам осталось красиво оформить таблицы. Для этого нужно указать, какие границы отображать в ячейках расположения расчётных таблиц. Выделите их указателем мышки и задайте режим “Все границы”.

Теперь нам необходимо построить графики заданных функций. Для этого воспользуемся инструментом “Диаграммы”.

Выберем тип диаграммы Точечная-Сглаженная и на следующем экране укажем необходимые нам диапазоны данных, как указано на рисунке. Незабудем указать название для каждого графика. Легенду расположим снизу. А саму диаграмму “На текущем листе”, поместив её справа от расчётных таблиц.

Если вы всё сделали правильно, то у вас на экране должна получиться вот такая картинка.

У кого не получилось, давайте вместе разберёмся в ошибках и добъёмся требуемого результата.

Теперь изменяя значения в ячейках B1, D1 можно смещать графики функций вдоль оси ОХ и изменять их масштаб.

Мы видим, что одно из решений нашей системы уравнений равно -1,5.

Изменяя начальное значение Х, найдите на графике второе решение системы уравнений.

Сколько у вас получилось?

Великолепно. У нас получилось. Мы легко решили такую сложную систему уравнений.

Но можно немного изменить нашу таблицу и усовершенствовать для решения множества подобных систем уравнений или для исследования графиков заданных функций.

Для этого нужно внести изменения в таблицу и расчётные формулы.

Можно сделать следующим образом, как показано на рисунке. Формулы в ячейках показаны на следующем рисунке.

Самостоятельно внесите все необходимые изменения.

Попробуйте изменять коофициенты A, B, C, D и посмотрите, как меняется форма и положение графиков соответствующих формул.

Заключительный этап урока

Ребята, как вы думаете, что удобней самостоятельно строить график функции на бумаге или поручить эту задачу ЭВМ?

А что легче для вас?

Конечно же, на данном этапе вам удобней самостоятельно на бумаге построить график функции. Но в конце урока мы получили универсальную таблицу, которая позволяет решать множество подобных заданий.

Мы ещё раз убедились, что компьютер это мощный инструмент, который позволяет не только приятно проводить время за играми, но и решать серьёзные задачи.

Надеюсь, что вам понравилось сегодняшняя работа. И вы Довольны достигнутыми результатами.

Корнями уравнения являются значения точек пересечения графика функции с осью абсцисс. Решением системы уравнений являются точки пересечения графиков функций. Такой метод нахождения корней называется графическим.

При помощи табличного процессора можно решать уравнения и системы уравнений. Для графического решения подойдут средства построения диаграмм.

Рассмотрим конкретный пример.

Найти решение следующей системы уравнений:

Ответ записать с точностью до 0,1.

Преобразуем данную систему:

1. Для оценки решений воспользуемся диаграммой, на которой отобразим графики обеих функций. Для этого, на рабочем листе MS Excel создадим таблицу со следующими значениями (рисунок 1):

· 1 строка – строка заголовков;

· столбец А: заполняем ячейки А2:А22 числами от -10 до 10 с шагом 1;

· при заполнении столбца В в ячейку В2 заносим формулу =А2*А2, которую затем копируем до ячейки В22;

Рисунок 1 – Таблица с данными для приблизительного поиска решений

· при заполнении столбца С в ячейку С2 заносим формулу =2*А2+4,копируем ее до ячейки С22.

С помощью мастера диаграмм выберем тип диаграммы График и построим диаграмму первоначальной оценки решений (рисунок 2).

Рисунок 2 – Диаграмма первоначальной оценки решения

На рисунке 2 вы можете увидеть координаты точек пересечения графиков – решения системы. Однако, пока мы получили только приближенные значения решений.

Для уточнения значения решений построим графики в интервалах от -2 до 0, где находится первое решение, и от 2 до 4, где находится второе решение с шагом, 0,1 (рисунок 3).

Рисунок 3 – Таблицы с данными для уточнения решений

2. Составляем новую таблицу для — 2 ≤ x ≤ 0. Строим точечную диаграмму для получения первого решения (рисунок 4).

Рисунок 4 – Поиск первого решения

3. Составляем новую таблицу для 2 ≤ x ≤ 4.Строим точечную диаграмму для получения второго решения (рисунок 5).

Рисунок 5 – Поиск второго решения

Решением нашей системы будут координаты точек пересечения графиков: x1= -1,25; y1= 1,5; x2= 3,2; y2= 10,8.

Графическое решение системы уравнений является приближенным.

Приложение 7

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10074 — | 7514 — или читать все.

78.85.5.224 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

excel11

Для всех рассмотренных выше задач удавалось построить уравнение или систему уравнений. Но во многих случаях при решении практических задач имеются лишь экспериментальные (результаты измерений, статистические, справочные, опытные) данные. По ним с определенной мерой близости пытаются восстановить эмпирическую формулу (уравнение), которая может быть использована для поиска решения, моделирования, оценки решений, прогнозов.

Читать еще:  Бесплатные онлайн фоторедакторы с эффектами на русском

Процесс подбора эмпирической формулы P(x) для опытной зависимости F(x) называется аппроксимацией (сглаживанием). Для зависимостей с одним неизвестным в Excel используются графики, а для зависимостей со многими неизвестными – пары функций из группы Статистические ЛИНЕЙН и ТЕНДЕНЦИЯ, ЛГРФПРИБЛ и РОСТ.

В настоящем разделе рассматривается аппроксимация экспериментальных данных с помощью графиков Excel: на основе данных стоится график, к нему подбирается линия тренда, т.е. аппроксимирующая функция, которая с максимальной степенью близости приближается к опытной зависимости. Excel предоставляет 5 видов аппроксимирующих функций:

Линейная – y=cx+b. Это простейшая функция, отражающая рост и убывание данных с постоянной скоростью.

Полиномиальная – y=c+c1x+c2x 2 +…+c6x 6 . Функция описывает попеременно возрастающие и убывающие данные. Полином 2-ой степени может иметь один экстремум (min или max), 3-ей степени – до 2-х экстремумов, 4-ой степени – до 3-х и т.д.

Логарифмическая – y=clnx+b. Эта функция описывает быстро возрастающие (убывающие) данные, которые затем стабилизируются.

Степенная – y=cx b , (х>0 и y>0). Функция отражает данные с постоянно увеличивающейся (убывающей) скоростью роста.

Экспоненциальная – y=ce bx , (e – основание натурального логарифма). Функция описывает быстро растущие (убывающие) данные, которые затем стабилизируются.

Степень близости подбираемой функции оценивается коэффициентом детерминации R 2 . Если нет других теоретических соображений, то выбирают функцию с коэффициентом R 2 , стремящимся к 1. Отметим, что подбор формул с использованием линии тренда позволяет установить как вид эмпирической формулы, так и определить численные значения неизвестных параметров.

Для всех 5 видов функций используется аппроксимация данных по методу наименьших квадратов. Подробнее о формулах расчета линии тренда и коэффициента детерминации смотрите в справке по F1, введя поиск слов «линия тренда».

В качестве примера рассмотрим зависимость продаж от рекламы, заданную следующими статистическими данными по некоторой фирме:

Реклама (тыс. руб)

Необходимо построить функцию, наилучшим образом отражающую эту зависимость. Кроме того, необходимо оценить продажи для рекламных вложений в 6 тыс. руб.

Приступим к решению: в первую очередь введите эти данные в Excel и постройте график, как на рис. 2.48. Как видно, график построен на основании диапазона B2:J2. Далее, щелкнув правой кнопкой мыши по графику, добавьте линию тренда, как показано на рис. 2.48.

В открывшемся окне настройки (рис. 2.49), в закладке Тип выберите для аппроксимации логарифмическую линию тренда (по виду графика). В закладке Параметры установите флажки, отображающие на графике уравнение и коэффициент детерминации.

После нажатия ОК Вы получите результат, как на рис. 2.50. Коэффициент детерминации R 2 =0.9846, что является неплохой степенью близости. Для подтверждения правильности выбранной функции (поскольку других теоретических соображений нет) спрогнозируйте развитие продаж на 10 периодов вперед. Для этого щелкните правой кнопкой по линии тренда – измените формат – после этого в поле Прогноз: вперед на: (рис. 2.49) установите значение 10.

После установки прогноза Вы увидите изменение кривой графика на 10 периодов наблюдения вперед, как на рис. 2.51. Он с большой долей вероятности отражает дальнейшее увеличение продаж с увеличением рекламных вложений.

Теперь вернитесь к состоянию рис. 2.50, нажав кнопку Отменить на Панели инструментов. Попробуйте изменить формат линии тренда – установите полиномиальную линию тренда полиномом 2-ой степени – получите рис. 2.52.

Как видно, полученная формула аппроксимирует исходную зависимость (на отрезке B2:J2) с большей степенью близости, т.к. R 2 =0.9973. В то же время, если сделать прогноз на 10 периодов вперед, то он будет не совсем верно отражать реальность: продажи не могут уменьшаться с увеличением рекламных вложений. Убедитесь в этом: сделайте прогноз на 10 периодов наблюдения вперед и получите график.

Опять вернитесь к состоянию рис. 2.50, нажав кнопку Отменить. Для вычисления продаж при рекламе в 6 тыс. руб. запишите в ячейку К2 формулу =23,796*LN(K1)+0,5961: должно получиться 43,2 тыс. штук.

В Excel имеется функция ПРЕДСКАЗ, которая вычисляет будущее значение Y по существующим парам значений X и Y значениям с использованием линейной регрессии. Функция Y по возможности должна быть линейной, т.е. описываться уравнением типа c+bx. Функция предсказания для нашего примера запишется так: =ПРЕДСКАЗ(K1;B2:J2;B1:J1). Запишите – должно получится значение 64.4.

Обратите внимание, что на рис. 2.50 ось Х подписана номерами периодов наблюдения, а на рис. 2.52 — значениями в точках наблюдения. Для нанесения значений на ось Х щелкните правой кнопкой мыши по графику и в выпавшем меню выберите пункт Исходные данные:

В открывшемся одноименном окне, в закладке Ряд, в поле Подписи оси Х, укажите диапазон ячеек, где записаны значения Х (здесь $B$1:$K$1).

Задачи для самостоятельного выполнения:

Постройте функцию, наилучшим образом отражающую зависимость и спрогнозируйте значения для следующего периода наблюдения со значением 5, основываясь на следующих данных:

Концентрация ядовитого вещества в водоеме изменялась во времени согласно таблице:

Время после выброса (часов)

Определите вид зависимости концентрации от времени и расчетную концентрацию в момент выброса.

Подбор формул со многими неизвестными

Использование линии тренда графиков Excel – наиболее наглядный и информативный способ восстановления зависимости и исследования связи между двумя переменными. Для зависимостей со многими неизвестными подбор формул выполняют с помощью специальных функций из группы Статистические — ЛИНЕЙН и ЛГРФПРИБЛ. Кроме того, функции ТЕНДЕНЦИЯ и РОСТ позволяют вычислить значения аппроксимирующей функции в диапазоне наблюдения. Еще один инструмент для подбора формул со многими неизвестными Регрессия, входящий в Пакет анализа (СервисАнализ данных…), будет рассмотрен в следующем разделе.

В настоящем разделе рассматривается аппроксимация экспериментальных данных с помощью функций ЛИНЕЙН, ТЕНДЕНЦИЯ, ЛГРФПРИБЛ и РОСТ. Функции ЛИНЕЙН и ТЕНДЕНЦИЯ применяют для восстановления линейных зависимостей вида y=b+a1x1+a2x2+…+anxn, а функции ЛГРФПРИБЛ и РОСТ — для нелинейных (показательных) зависимостей вида y=ba1 X 1 a2 X 2 …an Xn .

Функции ЛИНЕЙН и ЛГРФПРИБЛ возвращают массив с т.н. регрессионной статистикой, в котором содержатся вычисленные значения параметров (b,a1,a2,…an), коэффициент детерминации R 2 и другие данные, характеризующие аппроксимирующую функцию. Формат функций ЛИНЕЙН, ЛГРФПРИБЛ и их применение поясним на примере.

Расчет стоимости недвижимости

Агентство недвижимости оценивает однокомнатные квартиры по трем переменным: х1 – общая площадь, х2 – площадь кухни, х3 – этаж квартиры, предполагая, что между каждой переменной х1, х2, х3 и зависимой переменной y (стоимость) существует линейная зависимость. Подобрать формулу для вычисления стоимости однокомнатных квартир и вычислить стоимость квартиры с данными: х1=42кв.м, х2=11кв.м, х3=5эт. Собранные рекламные данные занесены в приведенную ниже таблицу.

Последовательность действий для решения задачи следующая:

Заведите приведенную таблицу в Excel, в ячейки A1:D14.

Выделите диапазон ячеек B17:E21 (рис. 2.54) для сохранения результатов вычислений функции ЛИНЕЙН – массива регрессионной статистики.

Вызовите мастер функций, выберите статистическую функцию ЛИНЕЙН и заполните параметры функции как на рис. 2.53. Параметр Изв_знач_y содержит диапазон D2:D14, т.е. известные значения y. Параметр Изв_знач_х содержит диапазон A2:C14, т.е. известные значения х. Параметр Стат=1, поскольку мы хотим получить дополнительную статистику.

После нажатия ОК встаньте на строку формул и нажмите Ctrl+Shift+Enter. В результате должен получиться массив значений, показанный на рис. 2.54. Интересующие нас коэффициенты выделены на рисунке (подробнее см. справку F1). Коэффициент детерминации R 2 =0.9725 вполне удовлетворителен. Таким образом, искомая формула имеет вид:

Y = 1,36*х1 + 0,1*х2 – 0,21*х3 – 19,27

После подбора формулы осталось вычислить стоимость при х1=42, х2=11, х3=5. В любую ячейку запишите выражение =1,36*42+0,1*11–0,21*5–19,27. В результате получится y=37.9 тыс. $.

Использование функции ТЕНДЕНЦИЯ покажем на этом же примере для расчета стоимостей различных вариантов квартир, как показано на рис. 2.55.

Новые значения Х, для которых надо рассчитать стоимость, следует ввести в ячейки F2:H14. Диапазон I2:I14 используйте для записи рассчитанных значений y, Вызовите мастер функций и функцию ТЕНДЕНЦИЯ. Параметры функции заполните как на рис. 2.56. Как видно параметр Нов_знач_х содержит диапазон F2:H14, т.е. новые значения х. После нажатия ОК встаньте на строку формул и нажмите Ctrl+Shift+Enter – результат, заполненный диапазон I2:I14 на рис. 2.55.

Оценка эффективности рекламы

Следующий пример. Подобрать формулу для вычисления процента увеличения оборота при различных затратах на рекламу. Экспериментально известны проценты увеличения оборота при затратах в 5, 10, 15, 20 тыс.$ в 3-х масс-медиа — на телевидении, радио и в прессе:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector