Lidtracker.ru

Лид Трэкер
27 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Делаем качественное охлаждение процессора

Делаем качественное охлаждение процессора

Качественное охлаждение процессора

Охлаждение процессора влияет на производительность и стабильность работы компьютера. Но оно не всегда справляется с нагрузками, из-за чего система даёт сбои. Эффективность даже самых дорогих систем охлаждения может сильно падать по вине пользователя – некачественная установка кулера, старая термопаста, запылившийся корпус и т.д. Чтобы этого не допускать, необходимо улучшить качество охлаждения.

Если процессор перегревается из-за ранее сделанного разгона и/или высоких нагрузках при работе ПК, то придётся либо менять охлаждение на более качественное, либо уменьшить нагрузку.

Важные советы

Основными элементами, которые производят наибольшее количество тепла являются – процессор и видеокарта, иногда это ещё может быть блок питания, чипсет и жёсткий диск. При этом, охлаждаются только первые два компонента. Тепловыделение остальных составных элементов компьютера незначительно.

Если вам нужна игровая машина, то задумайтесь, в первую очередь, о размерах корпуса – он должен быть как можно больше. Во-первых, чем больше системник, тем больше компонентов в него вы можете установить. Во-вторых, в большом корпусе больше пространства из-за чего воздух внутри него нагревается медленнее и успевает охлаждаться. Также обращайте отдельное внимание на вентиляцию корпуса – в нём обязательно должны быть вентиляционные отверстия, чтобы горячий воздух надолго не задерживался (исключение можно сделать в том случае, если вы собираетесь установить водяное охлаждение).

Старайтесь чаще мониторить температурные показатели процессора и видеокарты. Если часто температура переваливает за допустимые значения в 60-70 градусов, особенно в режиме простоя системы (когда не запущено тяжёлых программ), то предпринимайте активные действия по снижению температуры.

Рассмотрим несколько способов улучшить качество охлаждения.

Способ 1: правильное расположение корпуса

Корпус для производительных аппаратов должен быть достаточно габаритным (предпочтительно) и иметь хорошую вентиляцию. Желательно также, чтобы он был сделан из металла. Помимо этого, нужно учитывать и расположение системного блока, т.к. определённые объекты могут препятствовать попаданию воздуха внутрь, тем самым нарушая циркуляцию и повышая температуру внутри.

Системный блок

Примените эти советы к расположению системного блока:

  • Не устанавливайте вплотную к мебели или другим компонентам, которые могут препятствовать попаданию воздуха. Если свободное пространство сильно ограничено габаритами рабочего стола (чаще всего системник ставится в стол), то прижмите стенку, на которой нет вентиляционных отверстий, вплотную к стенке стола, тем самым выиграв дополнительное пространство для циркуляции воздуха;
  • Не располагайте рабочий стол рядом с радиатором или батарей;

Оптимальное расположение

Способ 2: провести очистку от пыли

Частицы пыли способны ухудшить циркуляцию воздуха, работу вентиляторов и радиатора. Также они очень хорошо задерживают тепло, поэтому необходимо регулярно проводить уборку «внутренностей» ПК. Частота уборки зависит от индивидуальных особенностей каждого компьютера – расположения, количества вентиляционных отверстий (чем больше последних, тем лучше качество охлаждения, но тем быстрее скапливается пыль). Рекомендуются делать чистку не реже раза в год.

Проводить уборку нужно при помощи не жёсткой кисти, сухих тряпок и салфеток. В особых случаях можно использовать пылесос, но только на минимальной мощности. Рассмотрим пошаговую инструкцию по очистке корпуса компьютера от пыли:

  1. Отключите ПК/ноутбук от питания. В ноутбуках дополнительно выньте аккумулятор. Снимите крышку, открутив болты или сдвинув специальные защёлки.
  2. Изначально уберите пыль с самых загрязнённых участков. Часто таковой оказывается система охлаждения. В первую очередь, тщательно прочистите лопасти вентилятора, т.к. из-за большого количества пыли они могут работать не в полную силу.

Пыльный компьютер

Очистка кулера

Способ 3: поставьте дополнительный вентилятор

При помощи дополнительного вентилятора, который крепится к вентиляционному отверстию на левой или задней стене корпуса, можно улучшить циркуляцию воздуха внутри корпуса.

Дополнительный вентилятор

Для начала нужно выбрать вентилятор. Главное, обратить внимание на то, позволяют ли характеристики корпуса и материнской платы установить дополнительное устройство. Отдавать предпочтение в этом вопросе какому-либо производителю не стоит, т.к. это довольно дешёвый и долговечный элемент компьютера, который легко заменить.

Если позволяют габаритные характеристики корпуса, то можно установить сразу два вентилятора – один на задней части, другой в передней. Первый выводит горячий воздух, второй всасывает холодный.

Способ 4: ускорить вращение вентиляторов

В большинстве случаев, лопасти вентиляторов вращаются со скоростью лишь 80% от максимально возможной. Некоторые «умные» системы охлаждения способны самостоятельно регулировать скорость вращения вентиляторов – если температура на приемлемом уровне, то уменьшать ее, если нет, то увеличивать. Не всегда данная функция работает корректно (а в дешёвых моделях её и вовсе нет), поэтому пользователю приходится разгонять вентилятор вручную.

Не нужно боятся слишком сильно разогнать вентилятор, т.к. в противном случае вы рискуете только незначительно увеличить расход энергии компьютером/ноутбуком и уровень шума. Для регулировки скорости вращения лопастей воспользуйтесь программный решением – SpeedFan. ПО полностью бесплатно, переведено на русский язык и имеет понятный интерфейс.

Способ 5: проводим замену термопасты

Замена термопасты не требует каких-либо серьёзных затрат по деньгам и времени, но здесь желательно проявить определённую аккуратность. Также нужно учесть одну особенность с гарантийным сроком. Если устройство всё ещё на гарантии, то лучше обратиться в сервис с просьбой поменять термопасту, это должны сделать бесплатно. Если вы попытаетесь самостоятельно сменить пасту, то компьютер снимут с гарантии.

При самостоятельной смене нужно внимательно отнестись к выбору термопасты. Отдавайте предпочтение более дорогим и качественным тюбикам (в идеале тем, которые идут в комплекте со специальной кисточкой для нанесения). Желательно, чтобы в составе присутствовали соединения серебра и кварца.

Удаление термопасты

Способ 6: установка нового кулера

Если кулер не справляется со своей задачей, то его стоит заменить более лучшим и подходящим по параметрам аналогом. Это же касается и устаревших систем охлаждения, которые из-за длительного периода эксплуатации не могут нормально функционировать. Рекомендуется, если позволяют габариты корпуса, выбрать кулер со специальными медными трубками теплоотвода.

Воспользуйтесь пошаговой инструкцией по замене старого кулера на новый:

  1. Обесточьте компьютер и снимите крышку, которая блокирует доступ ко внутренним компонентам.
  2. Снимите старый кулер. Некоторые модели требуют демонтаж по частям. Например, отдельно вентилятор, отдельно радиатор.
  3. Уберите старый кулер. Если все крепежи сняты, то он должен отойти без особого сопротивления.

Отсоединение кулера

Способ 7: установка водяного охлаждения

Данный способ подойдёт далеко не для всех машин, т.к. имеет много требований к размерам и другим характеристикам корпуса и материнской платы. К тому же, имеет смысл установки только в случае, если у вашего компьютера ТОПовые комплектующие, которые очень сильно греются, а вам не хочется ставить традиционную систему охлаждения, т.к. она будет производить слишком много шума.

Водяное охлаждение

Для монтажа системы водяного охлаждения вам понадобятся следующие детали:

    Водоблоки. Это небольшие медные блоки, куда по мере необходимости, в автоматическом режиме, заливается охлаждающая жидкость. При их выборе обращайте внимание на качество полировки и материала из которого они сделаны (рекомендуется брать медные, с гладкой полировкой). Водоблоки разделяются на модели для процессора и видеокарты;

Водоблок

Радиатор

Насос

Резервуар

Шланг

Инструкция по установке выглядит так:

    Желательно приобрести и установить на материнскую плату специальную крепёжную пластину, которая будет служить в качестве дополнительного фиксатора.

Крепёжная пластина

Установленный водоблок

Установка радиатора

Установка резервуара

Используя эти способы и советы, вы можете сделать качественное охлаждение процессора. Однако, применение части из них не рекомендуется для неопытных пользователей ПК. Мы в таком случае рекомендуем воспользоваться услугами специализированных сервисов.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 12351 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

ЗакрытьОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Система водяного охлаждения для компьютера — Подробное описание

Система водяного охлаждения для компьютера позволяет наиболее эффективно устранить проблему сильного нагрева центрального процессора.

Система водяного охлаждения для компьютера

Содержание:

Такое приспособление не имеет строго определенной структуры. Оно может варьироваться и состоять из различных структур сразу.

Суть системы жидкостного охлаждения

Во всех случаях жидкостная система охлаждения компьютера состоит из комбинации следующих типов схем:

  • Схема с параллельным подключением узлов, которые подвергаются охлаждению (параллельная схема работы). Достоинства такой структуры: простая реализация схемы, легко просчитываемые характеристики узлов, которые необходимо охладить;

Структурная схема параллельного соединения жидкостного охлаждения для ПК

Структурная схема параллельного соединения жидкостного охлаждения для ПК

  • Последовательная структурная схема – все охлаждаемые компоненты подключены между собой параллельно. Преимущества такой схемы заключаются в том, что охлаждение каждого из узлов происходит эффективнее.
    Недостаток: достаточно сложно направить к определённому узлу достаточное количество хладагента;

Последовательное подключение элементов

Последовательное подключение элементов

  • Комбинированные схемы. Они более сложные, так как содержат в себе сразу несколько элементов как с параллельным, так и с последовательным подключением.

Составляющие элементы

Чтобы охлаждение центрального процессора происходило быстро и эффективно, каждый куллер должен иметь следующие элементы:

  1. Теплообменник – данный элемент нагревается, вбирая в себя тепло центрального процессора. Перед новым использованием следует дождаться полного охлаждения теплообменника;
  2. Помпа для воды – резервуар для хранения жидкости;
  3. Несколько трубопроводов;
  4. Переходники между узлами и трубопроводами;
  5. Бачок для расширения— предназначен для того, чтобы обеспечить необходимое место для расширяющегося в процессе нагревания теплообменника;
  6. Наполняющий систему теплоноситель – элемент, который наполняет всю структуру жидкостью: дистиллированной водой или специализированной жидкостью для СВО;
  7. Ватерблоки – теплосъемники для тех элементов, которые выделяют тепло.

Составляющие элементы системы охлаждения

Лучшие системы водяного охлаждения для компьютера

Основное назначение систем охлаждения ПК – обеспечение бесперебойной и стабильной работы самого компьютера и создание нормальных условий для его пользователя.

Это подразумевает минимум шума во время эксплуатации.

Эти устройства отводят тепло от таких элементов, как процессор и блок питания, предотвращая их перегрев и последующий выход из строя.

Существует 2 варианта системы охлаждения – пассивное и активное.

Второй тип, в свою очередь, делится на воздушное, подходящее для обычных ПК и водяное, которое требуется для систем с очень мощными или разогнанными процессорами.

Жидкостное охлаждение отличается небольшими габаритами, невысоким уровнем создаваемого шума и высокой эффективностью отвода тепла, благодаря чему пользуется большой популярностью.

Для выбора такой системы следует учесть некоторые нюансы, включая:

  • Стоимость;
  • Совместимость с процессорами или видеокартами;
  • Параметры охлаждения.

Ниже приведен список самых популярных систем водяного охлаждения с популярного интернет-каталога Яндекс-маркет.

Список популярных систем водяного охлаждения с market.yandex.ru.

Список популярных систем водяного охлаждения с market.yandex.ru/catalog/55321.

DeepCool Captain 240

Оригинальная на вид СВО DeepCool Captain 240 оборудована двумя фирменными чёрно-красными вентиляторами с насечками на лопастях.

Крыльчатка каждого способна вращаться со скоростью до 2200 об/мин, создавая шум не более 39 дБ.

При этом на системе есть разветвитель, позволяющий установить дополнительно ещё 2 вентилятора.

Срок службы, который гарантируется производителем, составляет около 120 тысяч часов.

Вес системы, подходящей для процессоров и AMD и Intel, равен 1,183 кг.

DeepCool Captain 240

DeepCool Captain 240

Примерная стоимость устройства – от 5500 руб.

Arctic Cooling Liquid Freezer 240

Сравнительно новую систему охлаждения видеокарт Liquid Freezer 240, появившуюся в продаже в конце прошлого года, можно назвать универсальной.

Подходит она для большинства современных процессоров, создавая во время работы уровень шума не более 30 дБ.

Скорость вращения лопастей каждого из 4 вентиляторов – до 1350 об/мин, масса системы – 1,224 кг.

Главным достоинством является снижение температуры процессора на 40–50 градусов, а недостатком – лишь громоздкие размеры.

Arctic Cooling Liquid Freezer 240

Arctic Cooling Liquid Freezer 240

Покупка такого гаджета обойдётся в 6000 руб.

Cooler Master Nepton 140XL

Эффективная система охлаждения всего системного блока Nepton 140XL отличается увеличенными размерами радиатора и шлангов, а также последовательным, а не параллельным расположением двух вентиляторов.

Благодаря наличию 140-миллиметрового вентилятора JetFlo, обширной площади контакта жидкости с теплосъёмником и высокому качеству обработки последнего она охлаждает достаточно мощные процессоры, включая даже те, которые были разогнаны для увеличения производительности.

При этом эксплуатационный срок устройства, совместимого с процессорами типа Intel (S775, S1150, S1356, S2011) и AMD (AM2, AM3, FM2), достигает 160 тысяч часов.

Максимальная скорость вращения лопастей – 2000 об/мин, масса составляет 1,323 кг, а шум при работе не превышает 39 дБ.

Cooler Master Nepton 140XL

Cooler Master Nepton 140XL

Приобрести такую систему в сети можно по цене от 6200 руб.

DeepCool Maelstrom 240T

Систему Maelstrom 240T, предназначенную для процессоров Intel 1150–1156, S1356/1366 и S2011, а также AMD FM2, AM2 и AM3, отличает синяя подсветка вентиляторов, позволяющая не только охлаждать компьютер, но и сделать его моддинг.

Срок службы устройства – в переделах 120 тысяч часов, вес – 1100 г, создаваемый уровень шума – до 34 дБ.

DeepCool Maelstrom 240T

DeepCool Maelstrom 240T

Купить устройство в Интернете можно за 4400–4800 руб.

Corsair H100i GTX

Универсальную и достаточно простую в компоновке систему Corsair H100i GTX используют для охлаждения большинства выпускающихся в течение последних нескольких лет процессоров AMD и Intel.

Вес оборудования в сборе составляет 900 г, уровень шума – около 38 дБ, а сила вращения вентиляторов – до 2435 об/мин.

Corsair H100i GTX

Corsair H100i GTX

Средняя стоимость карты составляет в сети около 10 тыс. руб.

Cooler Master Seidon 120V VER.2

Особенностью использования системы Cooler Master Seidon 120V является возможность устанавливать её как внутри, так и снаружи корпуса.

При этом вентиляторы, вращающиеся со скоростью до 2400 об/мин, работают очень тихо – с уровнем шума до 27 дБ.

Совместимость устройства – современные процессоры Intel и AMD (до LGA1150 и Socket AM3, соответственно).

Система весит всего 958 г и способна проработать 160 тыс. часов.

Cooler Master Seidon 120V VER.2

Cooler Master Seidon 120V VER.2

Приобретение возможно по цене от 3600 руб.

Система охлаждения своими руками

Систему охлаждения процессора можно приобрести уже в готовом виде.

Однако из-за довольно высокой стоимости устройства и не всегда достаточной эффективности предлагаемых моделей, допускается сделать её самостоятельно и в домашних условиях.

Получившаяся система будет не такой привлекательной на вид, но вполне эффективной в действии.

Для самостоятельного изготовления системы следует сделать:

  • Ватерблок;
  • Радиатор;
  • Помпу.

Повторить конструкцию большинства СВО, выпускаемых серийно, вряд ли удастся.

Однако, немного разбираясь в компьютерах и термодинамике, можно попробовать сделать что-то похожее если не на вид, то хотя бы по принципу действия.

Изготовление ватерблока

Главную деталь системы, на которую приходится максимум выделяемого процессором тепла, изготовить сложнее всего.

Для начала выбирается материал устройства – обычно это листовая медь.

Затем следует определиться с габаритами – как правило, для охлаждения достаточно блока 7х7 см с толщиной около 5 мм.

Геометрическая форма устройства принимается такой, чтобы находящаяся внутри жидкость максимально эффективно омывала все элементы охлаждаемой конструкции.

Конструкция ватерблока своими руками

Конструкция ватерблока своими руками

В качестве основания ватерблока можно выбрать, например, медную пластину, а рабочую структуру изготовить из тонкостенных медных трубок.

Количество трубок на примере принято равным 32 шт.

Сборка осуществляется с использованием припоя и электропечи, нагретой до температуры 200 градусов.

После этого приступают к изготовлению следующей детали – радиатора.

Радиатор

Чаще всего это приспособление выбирают уже готовым, а не изготавливают дома.

Найти и приобрести такой радиатор можно либо в компьютерном магазине, либо в автомобильном салоне.

Однако существует возможность и самостоятельно создать необходимый элемент СВО из следующих предметов:

  • 4 медных трубок диаметром 0,3 см и длиной 17 см;
  • 18 метров медного обмоточного провода (d = 1,2 мм);
  • Любого листового металла толщиной около 4 мм.

Трубки обрабатываются припоем, из металла изготавливается оправка шириной в 4–5 см и длиной до 20 см.

В ней сверлятся отверстия, куда заводится проволока. Теперь провод наматывается вокруг обмотки.

Процесс повторяют три раза, получив столько же одинаковых спиралей.

Обмотка проволоки для радиатора

Обмотка проволоки для радиатора

Сборку спиралей и трубок начинают, сначала изготовив рамку. Затем натягивают на неё проволоку.

Заключительным этапом является соединение рамки с входным и выходным коллекторами системы. В результате получается деталь следующего вида:

Радиатор в сборке

Радиатор в сборке

Помпа и другие детали

В качестве помпы допускается брать аналогичное устройство, предназначенное для аквариумов. Достаточно будет прибора производительностью 300–400 л/мин.

Его комплектуют расширительным бачком (плотно закрывающейся пластиковой ёмкостью) и шлангом из ПВХ с проходными патрубками из обрезков металлических (медных) трубок.

Помпа с трубками и бачком для охлаждения

Помпа с трубками и бачком для охлаждения

Сборка

Перед тем, как собирать и устанавливать систему, следует удалить заводское устройство, установленное на процессоре. Теперь необходимо:

  • Закрепить ватерблок сверху охлаждаемой детали, для чего используют прижимную планку;
  • Заправить систему дистиллированной водой;
  • Закрепить на внутренней поверхности крышки компьютера радиатор (напротив отверстий). Если вентиляционных отверстий нет, их следует проделать самостоятельно.

Система в сборке

Система в сборке

Завершающим этапом должно стать закрепление сначала вентилятора на процессоре (поверх ватерблока).

И, наконец, необходимо обеспечить питание для помпы путём установки её рабочего реле внутри блока питания.

Рекомендуется подбирать устройство, рассчитанное на ток 50–100 мА и напряжение 3.3–24 В.

В результате получается собственноручно изготовленная система водяного охлаждения, достаточно эффективно снижающая температуру процессора на 25–35 градусов.

При этом экономятся средства, которые могли бы пойти на покупку недешёвого оборудования.

Тематичсекие видеоролики:

Как установить систему водяного охлаждения на ЦП Corsair H100i

Система водяного охлаждения для компьютера — Подробное описание

Система водяного охлаждения своими руками

Систему водяного охлаждения для вашего компьютера можно собрать своими руками. Водяное охлаждение — СВО поможет вам собрать бесшумную и стабильную систему для любых целей. Будь то игровой компьютер или рабочий.

Система охлаждения компьютера

Система охлаждения компьютера — набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов.

Тепло в конечном итоге может утилизироваться:

  1. В атмосферу (радиаторные системы охлаждения):
    1. Пассивное охлаждение (отвод тепла от радиатора осуществляется излучением тепла и естественной конвекцией)
    2. Активное охлаждение (отвод тепла от радиатора осуществляется излучением [радиацией] тепла и принудительной конвекцией [обдув вентиляторами])

    По способу отвода тепла от нагревающихся элементов системы охлаждения делятся на:

    1. Системы воздушного (аэрогенного) охлаждения
    2. Системы жидкостного охлаждения установка
    3. Системы открытого испарения

    Также существуют комбинированные системы охлаждения, сочетающие элементы систем различных типов:

    1. Ватерчиллер
    2. Системы с использованием элементов Пельтье

    Содержание

    Системы воздушного охлаждения [ править | править код ]

    Пассивная [ править | править код ]

    Если плотность теплового потока (тепловой поток, проходящий через единицу поверхности) не превышает 0,5 мВт/см², перегрев поверхности устройства относительно окружающей среды не превысит 0,5 °C (обычно — макс. до 50—60 °C), такая аппаратура считается не теплонагруженной и не требует специальных схем охлаждения. На компоненты с превышением этого параметра, но с относительно низким тепловыделением (чипсеты, транзисторы цепей питания, модули оперативной памяти), как правило, устанавливаются только пассивные радиаторы.

    Также, при не очень большой мощности чипа или при ограниченной вычислительной ёмкости задач, достаточно бывает только радиатора, без вентилятора.

    Принцип работы заключается в непосредственной передаче тепла от нагревающегося компонента на радиатор за счёт теплопроводности материала или с помощью тепловых трубок (или их разновидностей, таких, как термосифон и испарительная камера). Радиатор излучает тепло в окружающее пространство тепловым излучением и передаёт тепло теплопроводностью окружающему воздуху, что вызывает естественную конвекцию окружающего воздуха. Для увеличения излучаемого радиатором тепла применяют чернение поверхности радиатора.

    Наиболее распространенный тип систем охлаждения в настоящее время. Отличается высокой универсальностью — радиаторы устанавливаются на большинство компьютерных компонентов с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока.

    Поверхности нагревающегося компонента и радиатора после шлифовки имеют шероховатость около 10 мкм, а после полировки — около 5 мкм. Эти шероховатости не позволяют поверхностям плотно соприкасаться, в результате чего образуется тонкий воздушный промежуток с очень низкой теплопроводностью. Для увеличения теплопроводности промежуток заполняют теплопроводными пастами.

    Пассивное воздушное охлаждение центрального и графического процессоров требует применения специальных (и довольно больших) радиаторов с высокой эффективностью отвода тепла при низкой скорости проходящего воздушного потока и применяется для построения бесшумного персонального компьютера.

    Активная [ править | править код ]

    Prozessorkuehler Sockel 775 heatpipe.jpg

    Для увеличения проходящего воздушного потока дополнительно применяют вентиляторы (совокупность его и радиатора именуют кулером). На центральный и графический процессоры устанавливаются преимущественно кулеры.

    Также, на некоторые компьютерные компоненты, в частности, жёсткие диски, установить радиатор затруднительно, поэтому они принудительно охлаждаются за счёт обдува вентилятором.

    Системы жидкостного охлаждения [ править | править код ]

    Принцип работы — передача тепла от нагревающегося компонента радиатору с помощью рабочей жидкости, которая циркулирует в системе. В качестве рабочей жидкости чаще всего используется дистиллированная вода, часто с добавками, имеющими бактерицидный и/или антигальванический эффект; иногда (не рекомендуется) — масло, антифриз, жидкий металл [1] , или другие специальные жидкости.

    Система жидкостного охлаждения состоит из:

       — насоса для циркуляции рабочей жидкости;
    • теплосъёмника (ватерблока, водоблока, головки охлаждения) — устройства, отбирающего тепло у охлаждаемого элемента и передающего его рабочей жидкости;
    • радиатора для рассеивания тепла рабочей жидкости. Может быть активным или пассивным;
    • резервуара с рабочей жидкостью, служащего для компенсации теплового расширения жидкости, увеличения тепловой инерции системы и повышения удобства заправки и слива рабочей жидкости;
    • шлангов или труб, необходимых для перемещения водяного потока рабочей жидкости между остальными элементами системы жидкостного охлаждения;
    • (опционально) датчика скорости потока жидкости.

    Жидкость должна обладать высокой теплопроводностью, чтобы свести к минимуму перепад температур между стенкой трубки и поверхностью испарения, а также высокой удельной теплоёмкостью, чтобы при меньшей скорости циркуляции жидкости в контуре обеспечить большую эффективность охлаждения.

    Фреоновые установки [ править | править код ]

    Холодильная установка, испаритель которой установлен непосредственно на охлаждаемый компонент. Такие системы позволяют получить отрицательные температуры на охлаждаемом компоненте при непрерывной работе, что необходимо для экстремального разгона процессоров.

    • Необходимость теплоизоляции холодной части системы и борьбы с конденсатом (это общая проблема систем охлаждения, работающих при температурах ниже температуры окружающей среды);
    • Трудности охлаждения нескольких компонентов;
    • Повышенное электропотребление;
    • Сложность и дороговизна.

    Ватерчиллеры [ править | править код ]

    Системы, совмещающие системы жидкостного охлаждения и фреоновые установки. В таких системах антифриз, циркулирующий в системе жидкостного охлаждения, охлаждается с помощью фреоновой установки в специальном теплообменнике. Данные системы позволяют использовать отрицательные температуры, достижимые с помощью фреоновых установок для охлаждения нескольких компонентов (в обычных фреоновых системах охл. охлаждение нескольких компонентов затруднено). К недостаткам таких систем относится большая их сложность и стоимость, а также необходимость теплоизоляции всей системы жидкостного охлаждения.

    Системы открытого испарения [ править | править код ]

    Установки, в которых в качестве хладагента (рабочего тела) используется сухой лёд, жидкий азот или гелий [2] , испаряющийся в специальной открытой ёмкости (стакане), установленной непосредственно на охлаждаемом элементе. Используются в основном компьютерными энтузиастами для экстремального разгона аппаратуры («оверклокинга»). Позволяют получать наиболее низкие температуры, но имеют ограниченное время работы (требуют постоянного пополнения стакана хладагентом).

    Системы каскадного охлаждения [ править | править код ]

    Две и более последовательно включенных фреоновых установок. Для получения более низких температур требуется использовать фреон с более низкой температурой кипения. В однокаскадной холодильной машине в этом случае требуется повышать рабочее давление за счет применения более мощных компрессоров. Альтернативный путь — охлаждение радиатора установки другой фреонкой (то есть их последовательное включение), за счет чего снижается рабочее давление в системе и становится возможным применение обычных компрессоров. Каскадные системы позволяют получать гораздо более низкие температуры, чем однокаскадные и, в отличие от систем открытого испарения, могут работать непрерывно. Однако они являются и наиболее сложными в изготовлении и наладке.

    Системы с элементами Пельтье [ править | править код ]

    Элемент Пельтье для охлаждения компьютерных компонентов никогда не применяется самостоятельно из-за необходимости охлаждения его горячей поверхности. Как правило, элемент Пельтье устанавливается на охлаждаемый компонент, а другую его поверхность охлаждают с помощью другой активной системы охлаждения. Недостатки: низкий КПД, необходимость защиты от конденсации влаги.

    Оптимизация [ править | править код ]

    Воздушный поток [ править | править код ]

    Чем холоднее применяемая охлаждающая среда (воздух), тем эффективнее охлаждение. Более стратегически размещение вентиляторов улучшает воздушный поток внутри корпуса и, таким образом, снижает общую внутреннюю температуру внутри корпуса. Использование более крупных вентиляторов также повышает эффективность и снижает уровень шума. В руководстве AMD по системам охлаждения указывается, что применение переднего вентилятора не так существенно и в некоторых тестах в экстремальных ситуациях этот вентилятор способствует рециркуляции горячего воздуха больше чем привнесению холодного воздуха [3] .

    Моделирование воздушных потоков и влияния дизайна радиаторов возможно с использованием методов и программных пакетов CFD. Индивидуальный вентилятор у блока питания имеет преимущество в том, что тёплый воздух, производимый блоком питания, не смешивается с воздухом внутри корпуса и напрямую выводится наружу. Моделирование показывает что, температура общего корпуса ниже у любых нижних вентиляционных отверстий, а нагрев происходит в местах с низкой скоростью воздуха из-за его затруднённой циркуляции в местах между корпусом и блоком питания и около отсека для дисководов. [4]

    Положительное давление означает, что вдув в корпус сильнее, чем выдув из корпуса. При такой конфигурация давление внутри корпуса выше, чем в окружающей среде. Отрицательное давление означает, что выдув сильнее, чем вдув. Это приводит к тому, что внутреннее давление воздуха ниже, чем в окружающей среде. Обе конфигурации имеют преимущества и недостатки. Из этих двух конфигураций положительное давление применяется наиболее часто.

    Водяное охлаждение против воздушного. Что лучше?

    Ключевая часть почти любого современного компьютера — его система охлаждения. И топовые, и бюджетные процессоры требуют использования радиаторов и кулеров, чтобы поддерживать рабочую температуру на безопасном уровне, особенно в том случае, если вы планируете заниматься разгоном. Обычно хватает того кулера, который поставляется в коробке с CPU, но в мощные ПК часто устанавливают более мощные и способные системы охлаждения.

    Охлаждение центрального процессора можно организовать по-разному — с помощью обычного воздушного кулера, жидкостной системы вида «все в одном» или построенной собственноручно жидкостной системы охлаждения. Последняя лучше всего справится с топовыми CPU в разгоне, но правильно ее организовать очень тяжело — нужны и сноровка, и опыт, и дополнительные деньги.

    Перед тем, как дать ответ на вопрос «что лучше?», предлагаем вам ознакомиться с основными различиями между воздушным и водяным охлаждением.

    Водяное охлаждение против воздушного. Что лучше?

    Что нужно понять перед покупкой

    Факторов, которые стоит учитывать при покупке кулера для процессора, очень много. К примеру, недорогие решения часто будут ограничивать максимальную тактовую частоту разгона флагманских Core i9 и Ryzen 7.

    Если деньги — это для вас не проблема, то беспокоиться не о чем. Достаточно выбрать одную из топовых моделей Noctua (например, NH-D15) или Corsair (например, H100x) — они с легкостью справятся со своей задачей даже в тех корпусах, которые вентилируются не лучшим образом. Следующий шаг — это уже охлаждение с помощью жидкого азота (немного преувеличиваем, но дальше и правда идут только энтузиасты-оверклокеры).

    Если же ваш бюджет ограничен, придется подумать больше. Стоит отметить, что при серьезном разгоне водяные системы охлаждения в общем случае снижают максимальную температуру процессора лучше, но топовые воздушные кулеры (те же Noctua) от них практически не отстают, а иногда и обходят.

    Если вы уже выбрали корпус своего нового ПК, то вы знаете максимальный размер кулера, который сможете использовать. Так, когда речь идет о компактных корпусах для материнских плат форм-фактора mini-ITX, установка больших «башенных» систем охлаждения часто невозможна — в этом случае лучше будет использовать водяной AiO-кулер со средним или большим радиатором, который крепится на одной из сторон корпуса.

    Стоит учитывать и уровень шума — большие вентиляторы радиаторов водяных систем почти всегда будут тише, чем любые обычные кулеры. Впрочем, бесшумными их тоже не назовешь — если вы хотите достичь абсолютной тишины, о разгоне придется забыть (а также использовать какой-нибудь безумный тяжелый китайский корпус, целиком изготовленный из алюминия и внешне напоминающий терку).

    Если вас беспокоит внешний вид ПК, то и среди воздушных кулеров, и среди AiO-решений вы найдете модели с красивой RGB-подсветкой. Впрочем, ничто не сравнится с блестяще выстроенный кастомной системой с жесткими трубками, но на такую придется потратить очень много денег и нервов (или доверить дело дорогостоящим профессионалам, которых еще нужно найти).

    Водяное охлаждение против воздушного. Что лучше?

    Как работают кулеры разных типов?

    Что ж, пришло время прямо поговоить о преимуществах и недостатках разных типов систем охлаждения.

    Начнем с обычных воздушных кулеров. Такие модели состоят из двух основных частей — радиатора и самого вентилятора. Радиатор изготавливают из металла, который хорошо проводит тепловую энергию (например, дорогой меди или более дешевого алюминия) и прямо прилегает к поверхности процессора. Он рассеивает жар по множеству металлических ребер, которые, в свою очередь, охлаждаются потоком воздуха от вентилятора. Последний нужно подключить к соответствующему порту питания на материнской плате.

    Достоинства воздушных кулеров:

    -доступность (сравнимые водяные системы охлаждения почти всегда дороже);
    -простота в обращении (достаточно регулярно аккуратно избавлять их от пыли);
    -отсутствие утечек жидкости (по понятным причинам);
    -соотношение цены и производительности.

    Недостатки воздушных кулеров:

    -возможный высокий уровень шума под нагрузкой (даже крупные модели можно услышать без особых усилий, если они работают с топовыми процессорами);
    -крупные габариты и большой вес («башенные» кулеры грешат этим особенно сильно);
    -в большинстве случаев — заметно ограниченный максимальный уровень охлаждения (если речь идет о топовых Core i9 и других очень горячих CPU);
    -выглядят не так красиво (это субъективный пункт, но водяные системы дают больше свободы в дизайне общего внешнего вида ПК).

    Теперь поговорим о водяных системах охлаждения класса «все в одном». Они состоят уже из четырех частей — радиатора, вентиляторов, помпы и шлангов, по которым движется вода (кстати, использовать что-то кроме дистилированной H20 строго не рекомендуется, если вы не хотите заниматься обслуживанием системы гораздо чаще, чем хотелось бы — любая жидкость с красителем в итоге будет оставлять на внутренних стенках неприятный и вредный налет).

    Тепло процессора передается на небольшой металлический радиатор, сверху которого находится особый «водяной блок» — через него и перегоняется вода. Помпа нужна для того, чтобы поддерживать ее в движении, а вентилятор (или несколько) — для ее охлаждения.

    При покупке AiO-системы очень важно убедиться в том, что ваш корпус поддерживает установку радиаторов нужного размера — на верхней, передней или задней панели.

    Преимущества водяных AiO-систем охлаждения:

    -более высокий потенциал разгона (хороший AiO-кулер охлаждает лучше, чем большинство воздушных моделей);
    -лучше подходят для небольших корпусов (если поддерживается установка соответствующего радиатора);
    -более привлекательны внешне (снова субъективно).

    Недостатки водяных AiO-систем охлаждения:

    -обычно стоят дороже (просто из-за более высокой сложности в изготовлении);
    -более сложные обслуживание и установка (впрочем, проверенные варианты от известных производителей все еще достаточно просты даже для новичков);
    -возможность появления утечек (ее всегда стоит учитывать даже в том случае, когда вы выбираете очень надежную и дорогую модель).

    О кастомных водяных системах охлаждения с гибкими или жесткими трубками можно легко написать отдельную статью или даже серию статей. Самое главное, что нужно понимать человеку, который не называет себя «энтузиастом» — это то, что они во много раз сложнее и заметно дороже, но могут обеспечить более интересный внешний вид и еще более высокий потенциал разгона. Впрочем, все зависит от выбранных компонентов — трубок, водяного блока, помпы, радиаторов и так далее. Кроме того, к такой системе можно подключить и видеокарту, которую тоже в результате можно будет разогнать сильнее. С другой стороны, в продаже можно найти и AiO-системы, предназначенные как раз для видеокарт (при этом важно убедиться в том, что выбранная модель совместима именно с вашим GPU).

    Водяное охлаждение против воздушного. Что лучше?

    Делаем выводы

    Даже если вы не собираетесь достигать предельных значений тактовой частоты и напряжения ядер процессора, хорошая система охлаждения сделает любой современный CPU более быстрым просто потому, что он будет чаще и стабильнее работать на автоматически повышенной скорости. Но если вы не считаете себя ни энтузиастом, ни продвинутым любителем, то вам вполне будет достаточно и обычного воздушного кулера — либо того, который поставляется в комплекте с процессором, либо недорогого — от стороннего производителя. В трате больших денег в этом случае просто нет смысла.

    Если ваш бюджет заметно ограничен, то особого выбора тоже нет — воздушное охлаждение адекватно справится со своей задачей и обойдется куда дешевле водяного.

    Если же у вас есть свободные деньги для того, чтобы обеспечить максимальную производительность своего новенького компьютера, смело выбирайте водяной AiO-кулер — в этом случае его преимущества перевешивают недостатки.

    Наконец, если вы собираете «систему мечты» и готовы потратить на нее сколько угодно денег, есть смысл в поиске опытных специалистов, которые построят внутри выбранного корпуса экстремально эффективную и одновременно необычайно красивую систему из жестких трубок, помп и радиаторов. Такой ПК будет радовать и высокой тактовой частотой CPU, и приятным дизайном, который можно вписать в любой интерьер.

    Водяное охлаждение или воздушное?


    Продолжая тему повышения производительности игровых систем нельзя не сказать об эффективном охлаждении для нестандартных частот процессоров. Как правило в погоне за высокими частотами и максимальной производительностью многие пользователи уже давно используют компоненты в режимах далеких от штатных. Плюсы и минусы данного метода мы рассматривали в предыдущей рассылке.

    Законы Физики.

    Естественно, что с ростом тактовой частоты увеличивается температура на всех компонентах, — это законы физики. Слишком высокая температура может стать причиной термического повреждения кристалла процессора. Именно поэтому в современных компьютерах на аппаратном уровне реализован целый ряд защитных механизмов, направленных на то что бы уберечь процессор от повреждения в случае перегрева.

    Один из таких механизмов называется Троттлинг (от английского throttling): чем выше температура на кристалле процессора, тем больше машинных тактов он пропускает. Такты пропускаются, соответственно снижается эффективность и производительность – это и есть троттлинг процессора.

    Таким образом мы плавно подошли к сути нашей проблемы, с одной стороны нам нужна максимальная производительность нашей игровой системы, с другой стороны необходимо обеспечить максимально эффективное охлаждение и не допустить повышения температуры до уровня, при котором включаются защитные механизмы.

    Основательность воздушного охлаждения

    Классическим решением данной задачи является использование воздушных систем охлаждения, естественно стандартные кулера идущие в комплекте с процессором не способны эффективно отводить излишки тепла. Именно поэтому многие геймеры, профессионалы в области графики и даже инженеры предпочитают штатным системам более дорогие и производительные кулера от таких вендоров как Zalman, Noctua, Skythe, Cooler Master.

    Огромные радиаторы, толстые тепловые трубки, большие вентиляторы – это все конечно отлично, но есть нечто более эффективное. То, что сразу переводит в разряд «настоящих энтузиастов».

    Системы Водяного Охлаждения

    Системы жидкостного охлаждения (СЖО) или системы водяного охлаждения (СВО) – решение для тех, кто знает цену каждому дополнительному мегагерцу. Качественная СВО способна подарить тишину, несколько сотен дополнительных мегагерц и уважение друзей и коллег

    Что же такое эта СВО? Само название говорит за себя. В системе СВО в качестве теплоносителя используется вода. То есть сначала тепло от нагревающих элементов передается напрямую в воду, в отличии от воздушного, где передача происходит сразу в воздух.

    Как это работает:

    Какой же сделать выбор?

    Сейчас, когда разгон процессоров стал достаточно привычным делом, никто не откажется от повышенных частот для более быстрого выполнения задач, будь то профессиональная деятельность, или компьютерные игры с богатой и тяжелой графикой или высоконагруженными сценами с большим кол-вом персонажей и полигонов. Очевидно, что в таких условиях вопрос о надежной и максимально эффективной системе теплоотвода стоит очень остро. Чем мощнее процессор или графическая карта, тем эффективнее должна работать система охлаждения компьютера. А воздушные кулера, как правило, имеют очень неприятную особенность – вентиляторы при работе в экстремальных режимах, шумят очень сильно и это может вызвать негативные эмоции особенно у пользователей или геймеров в ночное время.

    Необслуживаемые СВО

    А это точно эффективнее?

    Эффективность замкнутых систем водяного охлаждения можно оценить на графике приведенном справа.

    Из дополнительных преимуществ необслуживаемых систем водяного охлаждения можно назвать освобождение места в пространстве рядом с сокетом для установки центрального процессора, поскольку аналогичные по производительности воздушные кулеры весьма громоздки и часто мешают установке памяти с высокими «рубашками». Снижается нагрузка на подложку системной платы, что может быть критично в случаях, когда компьютер часто транспортируется или отправляется через Транспортные компании.

    Кастомные системы:

    Но это лишь старт. Безусловно удобное и компактное решение не всегда дает выжать максимум производительности и раскрыть потенциал процессора. Тогда на помощь приходят системы водяного охлаждения, которые собираются по компонентам – “кастомные”, от англ. custom (custom-made) — изготовленные на заказ, системы водяного охлаждения.

    Cложность “кастомной СВО” может быть просто космической, и ограничивается только количеством денег у энтузиаста. Преимущества такого подхода перед готовыми СВО следующие: более мощная помпа, радиатор большего размера, возможность включить в контур СВО другие компоненты (чипсет, систему питания материнской платы, видеокарту и даже оперативную память). В дальнейшем при замене материнской платы или процессора, можно проапгрейдить систему охлаждения, а не менять ее целиком. Или заменить радиатор на более мощный и тем самым еще увеличить частоты до запредельных значений.

    голоса
    Рейтинг статьи
    Читать еще:  Как ускорить оперативную память правильно: лучшие способы
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector